Int. J. Heat Muss Transfer. Vol. 34, No. 6, pp. 1327-1336, 1991

Printed in Great Britain

0017-9310/91 $3.00+0.00
© 1991 Pergamon Press plc

Natural convection near a vertical corner of an
arbitrary angle

MAN HOE KIM, MOON-UHN KIM{ and DO HYUNG CHOIt

+ Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology,
P.O. Box 150, Cheongryang, Seoul, Korea
1 Department of Applied Mathematics, Korea Advanced Institute of Science and Technology,
P.O. Box 150, Cheongryang, Seoul, Korea

(Received 28 November 1988)

Abstract—The laminar natural-convection heat transfer near a vertical corner of an arbitrary angle is

presented. For large Grashof numbers, the corner-layer equations and appropriate boundary conditions

are formulated in an oblique coordinate system based on the method of matched asymptotic expansions.

The analysis is valid for any corner angles except the limiting angles 0° and 360°. The velocity and

temperature distributions are numerically determined using the finite difference technique of ADI type for
corner angles ranging from 60° to 300° for Prandtl numbers of 0.72 and 7.0.

1. INTRODUCTION

ONE OF the fundamental problems in natural con-
vection is the buoyancy-driven flow from the surfaces
composed of simple bodies such as flat plates and
cylinders. The heat transfer characteristics of the com-
bination bodies are quite different from those of the
individual bodies due to the mutual interaction of the
boundary layers. Because of these characteristics and
the importance in practical applications, the natural
convection boundary-layer interaction problem has
attracted many investigators.

As for the two-dimensional flow, the subject has
been studied extensively for various geometries [1-
4]. On the other hand, the literature on the three-
dimensional natural-convection boundary-layer flow
still remains scanty. Liu and Guerra [5] studied theor-
etically the natural convection near the vertical corner
of an arbitrary angle in a saturated porous medium
and examined the interaction between the two plates.
The laminar natural-convection boundary layer along
a vertical rectangular corner was analysed in ref. [6].
For large Grashof numbers, corner-layer equations
were derived and the interaction of the boundary
layers and the features of the crossflow patterns
which are very different from those of the high-
Reynolds number flow along a 90° corner were dis-
cussed in refs. [7, 8].

As a generalization of the earlier work [6], the
present study considers the laminar free convection
along a vertical corner of an arbitrary angle, which
is formed by two quarter-infinite rigid plates with co-
planar leading edges. The vertical plates are kept at
a uniform temperature 7, different from the ambient
temperature T, (it is assumed that 7, > T.). For
large Grashof number, the corner-layer equations
and the boundary conditions are derived by a method
similar to that used in ref. [9], which is concerned

with the high-Reynolds-number flow in a streamwise
corner of arbitrary angle.

2. CORNER-LAYER EQUATIONS

We consider the laminar natural-convection flow
along the corner formed by the intersection of two
vertical quarter-infinite plates. A suitable frame of
reference for this problem is a non-orthogonal oblique
coordinate system (x,, yo, Z,) depicted in Fig. 1. The
origin is in the symmetry plane at the leading edge
and the x, axis coincides with the intersection. Both
yo and z, axes are perpendicular to the x, axis and
lie, respectively, in the symmetry plane and in one of
the joining quarter-infinite plates. The coordinates are
simply related to the Cartesian coordinates x, y and
z (see Fig. 1) by

(X0, Y0, 20) = (x,y—ztana, z/cos a). (4]

Invoking the Boussinesq approximation and

neglecting the viscous dissipation in the fluid, the

governing equations, namely, the continuity, Navier—
Stokes, and energy equations, are given by

ouf vy  ow} 0 )
xo | Bye | 079 (22)
Du} 1 dp¥
D = ae PV GB(T—T,) (2b)
D . 1 dp¥
E(ua‘%—w?; sing) = — > 55% + vW* (¥ +wisina)
(2)
D . 1 dp¥
B;(w3‘+vi," sing) = — ; 31;% + vW*2(w¥ + 0¥ sina)
(2d)
Dr 5
‘D—t = kV**T (Ze)
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u grid spacing parameter, 0.2

Gr  local Grashof number, gBATx jv"
H mcsh size, 0.02

transformed independent variables
Nu  local Nusselt number

pE pressure in x,,. Jy,. =, coordinate system

p pressure in &, 7., { coordinate system

Pr Prandtl number, v/x

¥ magnitude of scaled crossflow velocity.
(LUMNGr&) " (e 24 wx )2

T tempcerature

T, wall temperature

T, ambient temperature

AT  temperature difference, 7, — T,
uf. vy, wh  velocity components in the x,,. 1.
=, directions

NOMENCLATURE

Xo. V. Io oblique coordinate system defined
in Fig. |
X, vz Cartesian coordinate systen.

Greek symbols

% M=)

% corner angle |

B thermal expansion coefficient i

Sl (=370

] dimensionless temperature,
(T—T,)(To=T,)

K thermal diffusivity

Il dynamic viscosity

v kinematic viscosity, p/p !

&, 1. ¢ scaled independent variables
P density of fluid

w*. o*, w¥  velocity components in the x, y, Ty wall shear stress
- directions T,  wall shear stiess as { — -«
u. v, scaled velocity components in the &, ¢,y velocity potential defined in equations (5)
i, { dircctions Q modified vorticity defined in 5
U, convective velocity, 1(gBATX) " equations (5). 5
where oo _ . =s
f4(711’,7+51.‘L«+v)+z=1',,+wr; =—p,+V7E (4¢)
D . ¢ ¢
= ud o +rd o
Dt CXy €Yo Gy u
| s . IS — 4(mT‘,,+;n"‘;+\T‘)+l‘»§'”+11‘\?: = —p+Vi (4d)
N ¢ . - (
V¥ = e <ﬁ,—23mxﬂ L+ )
cos” 2\l Ovelz,  @zy,
u . I o,
Let us now introduce the following scaled dimen-  — 4(’10’7*%”\)4’1’07:*“’()g = P;-Vi() (4¢)
sionless variables :
(. -0, 0w (. )] where
_ r”‘f vy (G o ”:vk((”) ! F=rtwsing, & = w4rsing
Lo v\a) ule
- I é .7 e
V= S o 281N g
cos” o \cn” el g

o PE (YT
Pl = i\ 4

0,0 =(T-T (T, =T,)

YL Gt‘>“’ )
]_.\", 4 T T N, 4 )

where Gr and U, denote, respectively, the Grashof
number and the convective velocity

Gr = gpATX 2
U, = y{(gPATx)" .
For Gr » 1. substituting cquations (3) into equa-
tions (2) and retaining the leading order terms in each
cquation give the following corner-layer equations:

— 40, +Cu-—2u) + v, 4w, =0 (4a)

U

4b
i (4b)

(nu, + Su- —2u) + o1, + wu, = V3u+40

After eliminating the pressure term between equa-
tions (4c) and (4d), the set of equations (4) may be
written in a more convenicnt form in terms of ‘the
velocity potentials’, ¢ and . and ‘the modified vor-
ticity” Q defined by

; /o
2 U
¢ = (;” _11) cosx, Y= ( 4 fw> cos

\

1 .
= [, =)+ (P, — i) sina]. (5

Q= - 3
Cos™

The final set of equations then takes the following
form:

) cosa
Viu+pu,+u— 5w dlcosa =0
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Xo. X
9
2o
Yo.Y
Y.
«— ( =const.
-— J)=const.
2.(
&
(44
2

Fic. 1. Definition sketch.

V2Q+ ¢Q, +yQ, +u[Qcos a+ 3 (n+{ sina)u;
— 3 +nsino)u,}+( +nsina)b, — (n+{sinx)f, =0

By — Gy SIN 0L+ Py + Y Sin

+Q, cos® a—u, coso =0

wmz - l//né sino+ '//«:C + ¢'m1 sing

—Q,cos’a—u cosa =0
1 2
»i;rV O+¢0,+y0, =0 (6)

where

N ] 2 2 62
\% =m((‘3?—251ndanac+gc—z>.

The corner-layer equations given above are of the
elliptic type, and the solution is sought in the region
0<n,{<o0.

1329

3. BOUNDARY CONDITIONS

Since the governing equations are elliptic, the con-
ditions are required on all four boundaries, i.e. 1 = 0,
{=10,n—0cand { - co.

3.1. Conditions on the wall, n = 0
The uniform temperature condition is assumed
along with the usual no-slip conditions at the wall, i.e.

u=¢=y=0, Q——1>l//,,,

" cos’a o=1O
3.2. Conditions on the symmetry plane, { = 0
In the Cartesian coordinate system (x, y, z) (see
Fig. 1), the velocity components u* and v* and the
temperature T are symmetric with respect to z, while
the component w* is antisymmetric. Thus, on the
symmetry plane z = 0 (or { = 0)

our oot oT
—_ = = * . =
Py el A P ®)

Condition (8) can be rewritten in terms of the corner-
layer variables as

u—u,sina=0, Q=¢y=0

¢ — (¢, ~ W) sina =0, 0,—6,sina=0. (9

3.3. Conditions as 5 — ©

As n — oo, the streamwise velocity component u
and the temperature 6 approach the values of zeroth-
order potential flow, i.e.

u~0,0~0 asy-— . (10a)

It is evident that the crossflow components v and w
are independent of 1, as n — co. In addition, from the
continuity equation and irrotationality of the outer
flow, it can be shown that v and w are independent of
{ also. That is, v and w become constants as n —
o0. Moreover, since w = 0 along { = 0, the plane of
symmetry (see equation (8)), the limiting value of w
should be 0. Equations (5) then give the conditions
for the velocity potentials

¢~ —ycosa,y ~0 asy— (10b)

where the value of y is the limiting value of v as y —
oo and will be determined in conjunction with the
value of ¢ as { — oo (see Section 3.4). Finally, the
irrotationality of the outer flow yields

Q~0 asy— 0. (10¢c)
3.4. Conditions as { - o

The asymptotic matching conditions can be deter-
mined by taking the limit of the corner-layer equations
(6) as { — oo [10, 11]. Taking the results for the rec-
tangular corner [6] into consideration, we formally
assume that, for large {, the dependent variables take
the following asymptotic form:

u~u(m+u i+
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o~ Qo)+ + -
0~ 0,0m)+0,(n)i¢+--- (1)

Substituting equations (11) into cquations (6) and
solving the resulting equations up to the second order,

ahta tha 1o ricohin dst
we oolain i a}/plu}/h‘uu mailning conaGit tions for

the corner-layer variables :
u~ 4" ()
Q ~ {f7(n)/cosa+ 27 (n) tan o+, (n)/cos’ o
¢~ 3f(n)cosz

Y~ {f7 () cos ot ()

0~ tn). (12)

Here f(y) and () are the solutions for the natural-
convection flow on the semi-infinite vertical flat plate,
i.c.

S 3L S () cos?
=2[f (M) cos’ a+t(n)cos a =0
) +3Pr f(pt(n)cos®a =0
S0)=/70) =0.20) =1 and [(%)=1t(x)=0
(13)
and the equation for ¢, (n) is given by

W) jcos” o+ 31 (m (n) + £ () = ( mé)d

"

(/‘n

Y0y =0. ¥, (0)=0 (14)

Mo = BIEOUE) -~

\AFYQ

o)

FA{f(E)) 2+ Er(E)/2] sin 2.

s

The vaiue of 7 in equation (i0b) can now be deter-
mined by requiring that ¢ of equation (10b) be equal
to that of equation (12) as y — oo, lL.e.

7= lim [=3f(n)]. (15)

B s

Equations (6) together with the boundary con-
ditions derived above constitute the governing equa-
tions for the corner of arbitrary angle. As a simple
verification, these equations can be shown to recover
the cqudtlons in Cartesian coordmates [6] for o = 45"

4. METHOD OF SOLUTION
The governing equations (6) subject to the bound-
ary conditions (7), (9). (10) and (12) discussed in the

previous section are to be solved for u, Q, ¢, y and 0
in the domain 0 < 5, { € «. Since the corner-layer
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variables Q and :l: become unbounded as

— L W
unaca ds > X, WE

introduce the fo]lowmg variables to make the numeri-
cal treatment of the problem more tractable:

b=
It 1s also convenient to transform the unbounded
region (0 <, { < «) into a finite computational

domain (0 < N, S < 1), which can be accomplished
by the following simple transformation :

Q=Q-f"(n)icosa, Sf(mycosa.  (16)

T (7
“l+an I 4ag
where « is a grid-spacing parameter. A uniform grid
in ihe computational plane gives a non-uniform grid
in the physical plane with the grids being more heavily
concentrated near the surface and the symmetry
plane.
The equations and the boundary conditions are

rewritten in terms of the new variables and are solved

by the alternate direction implicit schemec used in ref.
[6]. The mesh size, H, and the grid-spacing parameter.

a, that were used earlier {6] are found adequate in the
present analysis

y ~

{1 =0.02, a=102
The solution is considered to have converged when
the varation in successive lierations becomes iess than
10" * as done in ref. [6].

5. RESULTS AND DISCUSSION

In order 1o assess the accuracy of the procedure
including the effect of the obliqueness of the coor-
dinate system, the results for 90" corner flow are com-
pared with the earlier results of ref. [6] (Figs. 2-7).
The streamwise velocity component and the tem-
perature are in excellent agreement. The deviation is
less than 1% in the rclcmve sense. The crossflow vel-
ocity components are also in good agreement except
in the regions where the streamwise component u
becomes large. Such behaviour may partially be
explained if we note that the deviation can be exag-
gerated by the large values of u (see cquations (5)).
Although the relative discrepancies in this region
reach as ||rup as A,__QOA\

crossflow component are still quite small compared
to the streamwise component and will not be a con-
cern for the present purposes.

The numerical results are obtained for six corner
angles ranging from 60" to 300" for two different
Prandtl numbers, 0.72 and 7.0, and are presented in
Figs. 2-9. In Fig. 2, the isovels of streamwise velocity
u for corner angles of 90° and 270" are depicted. For
90" corner, closed contours of isovels, on which the
values of u are greater than the maximum value of the
iwo-dimensional velocity disiribution atong a vertical
plate, appear in the vicinity of the symmetry plane
near the corner. The maximum value occurs on the
symmetry plane. On the other hand, for 270" corner.

the absolute values of the
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FiG. 5. Crossflow profiles in the symmetry plane for various
corner angles: (a) Pr =0.72; (b) Pr=17.0.

no closed contour of streamwise isovels appears, and
the maximum value of the streamwise velocity on the
symmetry plane is smaller than the corresponding
two-dimensional one (see also Fig. 3). For 90° (270°)
corner, the velocity-boundary-layer thickness has its
maximum (minimum) value at the symmetry plane
and becomes thinner (thicker) as { increases and ulti-
mately approaches its asymptotic two-dimensional
value. The qualitative features of streamwise velocity
distributions for corner angles o, < 180° (o, > 180°)
are the same as those for 90° (270°). To complement
Fig. 2, Fig. 3 shows the effect of the corner angle on
the streamwise velocity profile in the symmetry plane
for angles in the range of 60°-300°. The thickness
of the velocity boundary layer as measured in the
symmetry plane is increasing as the corner angle is
reduced : the maximum value of # becomes larger and
the point of its occurrence moves outward.

Figure 4 shows the isolines of the magnitude of the
scaled crosstlow r, and the direction for corner angles
90" and 270°. The magnitude of the crossflow
increases with the distance from the corner and
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decreases with the Prandtl number. The crossflow for

. = 90° (generally for a, < 180°) is directing almost
radially inward to the corner, while for o, = 270° (gen-
erally for «, > 180°) inward flow toward the corner
occurs only in the vicinity of the symmetry plane and
the fluid near the wall diverges outward. Unlike high-
Reynolds-number flows [9], no complicated swirling
motion is observed. This simple inward/inward and
outward behaviour of the crossflow explains the
increases/decreases of the streamwise velocity com-
ponents discussed above. In Fig. 5, profiles of the
crossflow velocity component o in the symmetry plane
are shown for corner angles ranging from 60° to 300°.
The profiles show regular and expected behaviours.
It is to be noted that the profiles for corner angles o,
and 2n—a, algebraically approach the same limit as
n— 0.

The isotherms for corner angles 90° and 270° are
shown in Fig. 6. The temperature profiles in the sym-
metry plane are depicted in Fig. 7 for various corner
angles. The thickness of the thermal boundary layer
as measured in the symmetry plane decreases as the
corner angle increases. It is interesting to note that the
temperature close to the corner varies more slowly as
the corner angle becomes smaller ; there appears to be
a point of inflection in the profile when «, < 180°. The
ratio of the thermal to the velocity boundary-layer
thickness decreases with the Prandtl number as
expected from the two-dimensional natural con-
vection.

Figure 8 shows the local Nusselt number Nu

Nu:_ﬂxav(g)ﬁ

cosa \ 4

(18)

For a fixed {, the Nusselt number becomes larger as
the corner angle increases. It increases (decreases)
monotonically for o, < 180° (for &, > 180°) from zero
(from infinity) to the asymptotic two-dimensional
value as { increases. By contrast, for the case of forced
convection along a corner [12], Nu attains the
maximum (minimum) value and then approaches the
two-dimensional value. The difference in the behav-
iour of Nu distributions between the natural and the
forced convections can mainly be attributed to the
different behaviour of the crossflow.

In Fig. 9, the results for the wall shear stress for
60° < o, < 300° are shown. The shear stress 7, is
approximately given by, neglecting the effect of the
crosstflow

C4,(0.0) T,

= eosa f7(0)

where 1, is the value of 7, as { - o

2 314
pve o, Gry’
B =" /70) ( 4 > '

It is observed from the figure that for o, < 180°, 7,
starts from zero at the corner but attains the maximum
value before it gradually falls back to its asymptotic

(19)
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FIG. 9. Local shear stress distributions for various corner angles: (a) Pr = 0.72; (b) Pr=17.0.
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two-dimensional value as { — o¢. This can be expected
physically. As seen in Fig. 3. as the corner is

M. H. Kim ¢r al.

zontal plate, fnr. J. Hear Mass Transfer 17, 135 142
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CONVECTION NATURELLE PROCHE D'UN COIN VERTICAL D'ANGLE
QUELCONQUE

Résumé—On présente la convection thermique naturefle laminaire pres d'un coin vertical d’angle quel-

conque. Pour des grands nombres de Grashof. les équations et les conditions aux limites sont formulées dans

un systéme de coordonnées obliques, basé sur la méthode des développements asymptotiques. L'analyse est

valable pour des angles autres que 0 et 360 Les distributions de vitesse et de température sont numeérique-

ment déterminées en utilisant la technique aux différences finies du type ADI pour des angles allant de 60
a 300 ct pour des nombres de Prandtl de 0.72 ¢t 7.0.

NATURLICHE KONVEKTION IN DER NAHE EINER VERTIKALEN ECKE BELIEBIGEN
WINKELS

Zusammentassung-—Es wird der Wiirmeubergang bei laminarer natiirlicher Konvektion in der Nihe einer
vertikalen Ecke beliebigen Winkels untersucht. Die Grenzschichtgleichungen in der Ecke und die geeigneten
Randbedingungen werden {ur grole Grashof-Zahlen in einem schiefwinkligen Koordinatensystem be-
schrieben, das aut der Methode angepaBter asymptotischer Entwicklungen beruht. Die Untersuchung ist
fiir jeden beliebigen Winkel giltig, mit Ausnahme der Grenzwinkel 07 und 360°. Die Geschwindigkeits-
und Temperaturverteilungen werden numerisch mit Hilfe der Methode der finiten Differenzen (mit ADI)
ermittelt, und zwar fiir Eckwinkel von 60” bis 300", bei Prandtl-Zahlen von 0,72 und 7.0.

ECTECTBEHHAS! KOHBEKLIMS BEJIM3U BEPTUKAJIBHOIO YIJIA TPOU3BOJILHOHM
BEJINUHHbI

Amnoraums—Viccienyercs JIaMHHAPHBIA €CTECTBEHHOKOHBEKTHBHbIN TEIUIONEPEHOC BOJIU3M BEPLUMHBI
BEPTHKAJILHOTO YI7a MpOM3soJibHON Besmuuhbl. IIps HeBonbmimx wicnax [pacroda ypasHenus ais
3TOH 3a]a4¥ M COOTBETCTBYIOIUIME TPAHWYHLIE YCIOBHS (POPMYJIHPYIOTCA B CHCTEME KOCOYTOJIbHBIX
KOOPAMHAT HZ OCHOBAHMM METONA CPALUMBAEMbIX ACHMITOTHYECKHX DAC/IOKEHWHA. AHAJIMI HBIAETCH
CIPABEATHBLIM TIPH OGO BeTHYMHE Yria 3a WCKTIOYEHHEM MpeielbHbiX, cocTapsiomux 0° u 360°. C
KCTIOJIb30BAHMEM HEABHOTO METOJA MNEPEMEHHBIX HANpPABJICHHH YHCIICHHO ONpee/sIOTCA pacnpeacse-
HER CKOPOCTER M TEMTIEPATYp [UIS YIJIOB, A3MEHAIOWAXCA OT 60° no 300° npu wucnax Ipangrns 0,72 u
7,0.



