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Abstract-The laminar natural-convection heat transfer near a vertical corner of an arbitrary angle is 
presented. For large Grashof numbers, the corner-layer equations and appropriate boundary conditions 
are formulated in an oblique coordinate system based on the method of matched asymptotic expansions. 
The analysis is valid for any comer angles except the limiting angles 0” and 360”. The velocity and 
temperature distributions are numerically determined using the finite difference technique of ADI type for 

corner angles ranging from 60” to 300” for Prandtl numbers of 0.72 and 7.0. 

1. INTRODUCTION 

ONE OF the fundamental problems in natural con- 
vection is the buoyancy-driven flow from the surfaces 
composed of simple bodies such as flat plates and 
cylinders. The heat transfer characteristics of the com- 
bination bodies are quite different from those of the 
individual bodies due to the mutual interaction of the 
boundary layers. Because of these characteristics and 
the importance in practical applications, the natural 
convection boundary-layer interaction problem has 
attracted many investigators. 

As for the two-dimensional flow, the subject has 

been studied extensively for various geometries [l- 
41. On the other hand, the literature on the three- 
dimensional natural-convection boundary-layer flow 

still remains scanty. Liu and Guerra [S] studied theor- 
etically the natural convection near the vertical corner 
of an arbitrary angle in a saturated porous medium 

and examined the interaction between the two plates. 
The laminar natural-convection boundary layer along 
a vertical rectangular corner was analysed in ref. [6]. 

For large Grashof numbers, corner-layer equations 
were derived and the interaction of the boundary 
layers and the features of the crossflow patterns 
which are very different from those of the high- 
Reynolds number flow along a 90” corner were dis- 
cussed in refs. [7, 81. 

As a generalization of the earlier work [6], the 

present study considers the laminar free convection 
along a vertical corner of an arbitrary angle, which 
is formed by two quarter-infinite rigid plates with co- 
planar leading edges. The vertical plates are kept at 
a uniform temperature T, different from the ambient 
temperature T, (it is assumed that T, > Tm). For 

large Grashof number, the corner-layer equations 
and the boundary conditions are derived by a method 
similar to that used in ref. [9], which is concerned 

with the high-Reynolds-number flow in a streamwise 

corner of arbitrary angle. 

2. CORNER-LAYER EQUATIONS 

We consider the laminar natural-convection flow 
along the corner formed by the intersection of two 
vertical quarter-infinite plates. A suitable frame of 

reference for this problem is a non-orthogonal oblique 
coordinate system (x,, y,, z,,) depicted in Fig. 1. The 
origin is in the symmetry plane at the leading edge 
and the x0 axis coincides with the intersection. Both 
y, and z. axes are perpendicular to the x0 axis and 
lie, respectively, in the symmetry plane and in one of 
the joining quarter-infinite plates. The coordinates are 
simply related to the Cartesian coordinates x, y and 

z (see Fig. 1) by 

(xo,yO, zO) = (x,y-z tancr,z/cosa). (1) 

Invoking the Boussinesq approximation and 
neglecting the viscous dissipation in the fluid, the 
governing equations, namely, the continuity, Navier- 
Stokes, and energy equations, are given by 

au; au; aw,* 
Jg+K+dz=O 0 

DUO* 
p= 
Dt 

-; g +vV*‘u,*+gj(T-TT,) (2b) 

&:+ 1 aP: 
4 sin 01) = - - - + vV**($ + wo* sin cI) 

P ah 
(2c) 

;(wf+ 
1 apt 

o,*sina)= ---+VV**(w,*+Ug*sin~) 
P az, 

(24 

DT 
- = IcV*~T 
Dt 
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NOMENCLATURE 

i/ g-id spacing parameter. 0.2 \ /I. .)‘I/. _I, oblique coordinate system defined 
Gr local Grashof number, g/IA\~r’;r’ in Fig. I 
H mesh size. 0.02 Y, j’. - Cartesian coordinate system. 
.Y, S transformed indcpcndcnt variables 
Nrr local Nussclt number Greek symbols 

Pf pressure m s,,. ,I’,/. :,, coordinate system % i(+%) 
P pressure in 5. ‘1. c coordinate system 

; 
corner angle 

PI Prandtl number, II/K thermal expansion coefficient 
I’ magnitude of scaled crossflow velocity. ;‘ lim l,_. / [-.7f(Jl)l 

(lLU,)((;r:4)’ J(l~*‘+ll’*Z)’ 2 II dimensionless temperature. 
__ 
I tcmpcrature (T-T,):‘(T,--T,) 

T& wall lcmpcraturc Ii thermal diffusivity 

T, ambient temperature I( dynamic viscosity 
AT temperature difference, T,, - T, I’ kinematic viscosity, /l,!/) 
u;. Cf. \I$ velocity components in the _I-~,. ro. <, TV. { scaled independent variables 

z,, directions f ’ density of fluid 
u*. 1.*, It.* velocity components in the .Y. .I‘. T,, wall shear stress 

z directions r,, I ~a11 shear stress as l + I 
II. 1‘. II’ scaled velocity components in the i;. (I)> i velocity potential defined in equations (5) 

‘1. i directions n modified vorticity defined in 
r;, convective velocity. A( g/IAT.r) ’ ’ equations (5). 

where 

Let us now introduce the following scaled dimen- 

sionless variables : 

O(q,i) = (T-T, );‘(T,, -T, 1 

where C;r and I!, denote, respectively, the Grashof 
number and the convective velocity 

(;I. = gliA%u”/t.’ 

(;: = ;( ,g/jAT.\-) ’ ’ 

For Gr >> 1. substituting equations (3) into equa- 
tions (2) and retaining the leading order terms in each 
equation give the following corner-layer equations : 

- &p,, + ;u; - 2U) + 2’,# + II’_ = 0 (4a) 

1 (vu,, + ;u. - 2u) + L’ll,/ + 11’11. = V”lrt-40 (4b) 

~(‘7’,;+C~.+i’)+r;r,+,,,i: = -p,,+n (4C) 

where 

After eliminating the pressure term between equa- 
tions (4~) and (4d), the set of equations (4) may bc 
written in a more convenient form in terms of ‘the 
velocity potentials’, 4 and I/J. and ‘the modified vor- 

ticity’ R defined by 

/ 

( i 
/ ,, 

(I, = 
1111 

\4 
_-_1’ cosx. $ = [\;’ -W~cos’Y 

Q= coal x [(ti7 - 4’,.) + (6, -i.) sin 4. (5) 

The tinal set of equations then takes the following 
form : 

v’Ll+$bLL,,+~l4.- 

cos x 

3 
II2 +4ocosx = 0 
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3. BOUNDARY CONDITIONS 

Since the governing equations are elliptic, the con- 

ditions are required on all four boundaries, i.e. q = 0, 

l=O,q-+Ooand[-+co. 

3.1. Conditions on the wall, q = 0 
The uniform temperature condition is assumed 

along with the usual no-slip conditions at the wall, i.e. 

3.2. Conditions on the symmetry plane, [ = 0 
In the Cartesian coordinate system (x, y, z) (see 

Fig. l), the velocity components u* and v* and the 
temperature Tare symmetric with respect to z, while 
the component w* is antisymmetric. Thus, on the 

symmetry plane 2 = 0 (or c = 0) 

FIG. 1. Definition sketch. 

-~(i+rlsincr)u,]+(i+‘Isina)B,-(?+isincc)B, = 0 

tisr - tisi sin a + *cc + 4,, sin a 
-~&os*u-uu(cosu = 0 

;v*e+qwq+@3: = 0 (6) 

where 

v* El- ( a* 
--Z-2sinccd2+a2 

cost? drj +ai ai= > 

The corner-layer equations given above are of the 
elliptic type, and the solution is sought in the region 

O,<ul,i,<cO. 

au* au* 
-_=-_= 
aZ aZ 

w* = aT = 0. 
az 

Condition (8) can be rewritten in terms of the corner- 
layer variables as 

uZ.-u,sinu = 0, 

c$ - (& - $J sin a = 0, 

z2=$=0 

O<--0,sina = 0. (9) 

3.3. Conditions as q + co 
As q --t co, the streamwise velocity component u 

and the temperature 0 approach the values of zeroth- 

order potential flow, i.e. 

u-O,@-0 asq+co. (lOa) 

It is evident that the crossflow components v and w 
are independent of IJ, as n + 00. In addition, from the 
continuity equation and irrotationality of the outer 
flow, it can be shown that v and w are independent of 

[ also. That is, v and w become constants as n -+ 
co. Moreover, since w = 0 along [ = 0, the plane of 

symmetry (see equation (8)), the limiting value of w 
should be 0. Equations (5) then give the conditions 

for the velocity potentials 

4- -ycosa,+-0 asq+cc (lob) 

where the value of y is the limiting value of v as q -+ 
co and will be determined in conjunction with the 

value of 4 as [ -+ cc (see Section 3.4). Finally, the 
irrotationality of the outer flow yields 

R-O asq-+co. (1Oc) 

3.4. Conditions as [ + co 
The asymptotic matching conditions can be deter- 

mined by taking the limit of the corner-layer equations 
(6) as c -+ co [lo, 111. Taking the results for the rec- 
tangular corner [6] into consideration, we formally 
assume that, for large [, the dependent variables take 
the following asymptotic form : 

24 - %(v)+~I(q)/i+ “’ 
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R - ;n”(?y)+n,(r/)+ “’ 

4 - $“(rl)+d,l(rl)/r+ “’ 

i - cc’/,,(rl)+$l(rl)+ “’ 

0 - li,,(t/)+ti,(q);<+ .‘.. (11) 

Substituting equations (I I) into equations (6) and 
solving the resulting equations up to the second order, 
we obtain the appropriate matching conditions for 
the corner-layer variables : 

I/ _ 4f”(l/) 

R z c.1 “(rf)/cos J +ZJ”‘(ty) tan c1+ $‘, (~)/cos’ I 

4 - 3f’(?) cos x 

i - l/“(V) cos a+ ti I (rl) 

0 - t(q). (12 

Here .f’(q) and f(q) are the solutions for the natural- 
convection flow on the semi-infinite vertical flat plate. 
i.e. 

f’“‘(q) + 3,f’(rl)f”‘(?/) cos? X 

-2[f”(~)]‘cos’cr+r(~)cos~x = 0 

t”(t1) + 3Pr .f’(r/)r’(q) cos: r = 0 

f’(0) =.f”(O) = 0, r(O) = I and f”(x) = t(x) = 0 

(13) 

and the equation for i,(q) is given by 

! 

I 

i’;(V)/cos’ z-f 3.#‘(?)$‘, (8) +f”(s)$ I(V) = h(t) d( 
i, 

where 

$,(O, = 0. $,(a) = 0 (14) 

l?(r) = [3 Y(%){.f’(S) - <.f”(i’)) 

+4{,/“(j)} ’ +<t’(t)/2] sin 2r. 

The value of y in equation (I Ob) can now be deter- 

mined by requiring that d, of equation (I Ob) be equal 
to that of equation (12) as r/ + X. l.c. 

;‘= lim [-3f’(q)]. (15) )I 1 I 

Equations (6) together with the boundary con- 
ditions derived above constitute the governing equa- 
tions for the corner of arbitrary angle. As a simple 
verification, these equations can be shown to recover 
the equations in Cartesian coordinates [6] for x = 45 
by substituting the transformation relations for ‘7 
and (7. 

4. METHOD OF SOLUTION 

The governing equations (6) subject to the bound- 
ary conditions (7), (9). (IO) and (12) discussed in the 
previous section arc to be solved for u, !$ 4, $ and 0 
in the domain 0 < q, < < Z. Since the corner-layer 

variables R and $ become unbounded as ; + Y,, MC 

introduce the following variables to make the numeri- 
cal treatment of the problem more tractable : 

t=l = II-;f”‘(q)aosx $ = t+b-;f”(ty)cosa. (16) 

It is also convenient to transform the unbounded 
region (0 < g, < < ~1) into a finite computational 
domain (0 < N. S < 1). which can be accomplished 
by the following simple transformation : 

(17) 

where u is a grid-spacing parameter. A uniform grid 
in the computational plane gives a non-uniform grid 
in the physical plane with the grids being more heavily 
concentrated near the surface and the symmetry 
plane. 

The equations and the boundary conditions are 

rewritten in terms of the new variables and are solved 
by the alternate direction implicit scheme used in ref. 
[6]. The mesh size, H, and the grid-spacing parameter, 
N, that were used earlier [6] are found adequate in the 
present analysis 

H = 0.02, c, = 0.2. 

The solution is considered to have converged when 
the variation in successive iterations becomes less than 
10. ’ as done in ref. [6]. 

5. RESULTS AND DISCUSSION 

In order to assess the accuracy of the procedure 
including the effect of the obliqueness of the coor- 
dinate system, the results for 90” corner flow are com- 
pared with the earlier results of ref. [6] (Figs. 227). 
The streamwise velocity component and the tem- 

perature are in excelient agreement. The deviation is 
less than I o/o in the relative sense. The crossflow vel- 
ocity components are also in good agreement except 
in the regions where the streamwise component u 
becomes large. Such behaviour may partially be 
explained if we note that the deviation can be exag- 

gerated by the large values of 21 (see equations (5)). 
Although the relative discrepancies in this region 
reach as large as 45%. the absolute values of the 
crossfow component are still quite small compared 
to the streamwise component and will not be a con- 
cern for the present purposes. 

The numerical results are obtained for six corner 
angles ranging from 60’ to 300 for two different 
Prandtl numbers, 0.72 and 7.0, and are presented in 
Figs. 2-9. In Fig. 2, the isovels of streamwise velocity 
u for corner angles of 90 and 270 are depicted. For 
90 corner, closed contours of isovels, on which the 
values of u are greater than the maximum value of the 
two-dimensional velocity distribution along a vertical 
plate, appear in the vicinity of the symmetry plane 
near the corner. The maximum value occurs on the 
symmetry plane. On the other hand, for 270 corner. 
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FIG. 5. Crossflow profiles in the symmetry plane for various 
corner angles : (a) I+ = 0.72; (b) Pr = 7.0. 

no closed contour of streamwise isovels appears, and 
the maximum value of the streamwise velocity on the 
symmetry plane is smaller than the corresponding 
two-dimensional one (see also Fig. 3). For 90” (270”) 

corner, the velocity-boundary-layer thickness has its 
maximum (minimum) value at the symmetry plane 
and becomes thinner (thicker) as < increases and ulti- 
mately approaches its asymptotic two-dimensional 
value. The qualitative features of streamwise velocity 
distributions for corner angles a, < 180” (cc, > 180”) 
are the same as those for 90” (270’). To complement 
Fig. 2, Fig. 3 shows the effect of the corner angle on 
the streamwise velocity profile in the symmetry plane 
for angles in the range of 60”-300”. The thickness 
of the velocity boundary layer as measured in the 
symmetry plane is increasing as the corner angle is 
reduced : the maximum value of u becomes larger and 
the point of its occurrence moves outward. 

Figure 4 shows the isolines of the magnitude of the 
scaled crossflow r, and the direction for corner angles 
90” and 270’. The magnitude of the crossflow 
increases with the distance from the corner and 

decreases with the Prandtl number. The crossflow for 

CC, = 90” (generally for a, < 180”) is directing almost 
radially inward to the corner, while for tl, = 270” (gen- 
erally for LY, > 180”) inward flow toward the corner 
occurs only in the vicinity of the symmetry plane and 
the fluid near the wall diverges outward. Unlike high- 
Reynolds-number flows [9], no complicated swirling 
motion is observed. This simple inward/inward and 
outward behaviour of the crossflow explains the 
increases/decreases of the streamwise velocity com- 

ponents discussed above. In Fig. 5, profiles of the 
crossflow velocity component L; in the symmetry plane 

are shown for corner angles ranging from 60” to 300”. 
The profiles show regular and expected behaviours. 
It is to be noted that the profiles for corner angles CI, 
and 2n-c(, algebraically approach the same limit as 

‘1+ a,. 
The isotherms for corner angles 90’ and 270” are 

shown in Fig. 6. The temperature profiles in the sym- 

metry plane are depicted in Fig. 7 for various corner 
angles. The thickness of the thermal boundary layer 
as measured in the symmetry plane decreases as the 
corner angle increases. It is interesting to note that the 
temperature close to the corner varies more slowly as 

the corner angle becomes smaller ; there appears to be 
a point of inflection in the profile when a, < 180”. The 
ratio of the thermal to the velocity boundary-layer 
thickness decreases with the Prandtl number as 

expected from the two-dimensional natural con- 
vection. 

Figure 8 shows the local Nusselt number Nu 

. (18) 

For a fixed [, the Nusselt number becomes larger as 
the corner angle increases. It increases (decreases) 

monotonically for c(, < 180” (for ~1, > 180”) from zero 
(from infinity) to the asymptotic two-dimensional 
value as [ increases. By contrast, for the case of forced 
convection along a corner [12], Nu attains the 
maximum (minimum) value and then approaches the 

two-dimensional value. The difference in the behav- 
iour of Nu distributions between the natural and the 
forced convections can mainly be attributed to the 

different behaviour of the crossflow. 
In Fig. 9, the results for the wall shear stress for 

60” Q CI, < 300” are shown. The shear stress Z, is 

approximately given by, neglecting the effect of the 
crossflow 

where z,, is the value of r, as [ + co 

314 

7 w JI 
= E!!J”(o) ; 0 

It is observed from the figure that for L-X, < 180‘, z, 
starts from zero at the corner but attains the maximum 
value before it gradually falls back to its asymptotic 
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FIG. 7. Temperature profiles in the symmetry plane for various corner angles : (a) Pr = 0.72 ; (b) Pr = 7.0 
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t\\o-dimensional value as < + -/v. Thiscan be expect& 
physically. As seen in Fig. 3. as the corner is 
approached. the streamwise velocity increases by the 
enhanced entrainment due to the interaction 01 

boundary layers and so does the shear stress. 
Howcvcr, in tnc close ncighbourhood ot‘ the corner. 
the increased motnentum is counterbalanced and 
eventually ovcrwhclrncd by the compound ciscous 
effect of both walls. The shear stress decreases accord- 
ing]). For I, > 180 . T,\ rises to rather large ~ulucs 

as < + 0. decreases to its mnimum value and then 
increases to the two-dimensional v:Jw with the 

increase of ,. It is also observed from the figure that. 
for x, < 1x0 , T,\ is larger (smalier for 1, > 1 X0 ) for 

the greater corncr angle near the co)-ncr but the trend 
raerses beyond the point where T,, has the peak value. 

From the numcl-icul results shown in Figs. :! 9. it 

is seen tiwt the qualitative ltiaturcs of fluid motion 
and heat transfer near the corner arc cntirclq difrercnt 
if the corner angle ^n, is greater !han or less than I X0 
Contrasting behaviours in the crossflow pattcrn and 
consequently the Nussclt number distribution ran 

the corner arc also noted bctwccn the present results 
and those of the forced convection in the high- 
Reynolds-numbcr flop. 
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CONVECTION NATURELLE PROCHE D’UN COlN VERTICAL D’ANGLt. 
QUELCONQU E 

Khmk--On prtsente la convection thermiyue naturellc laminaire prcs d’un coin vertical d’anglc qucl- 
conque. Pour des grands nombres de Grashof. les &quations et les conditions aux iimitcs sont formulL:es dans 
un sy>tPme de coordonnkes obliques. basi sur la m&hode de3 d&veloppements asymptotiques. L’analqse cst 
Lalable pour dcs angles autres quc 0 et 360 Les distributions dc vitessc et de temptrature sont numt;riyuc- 
ment determin&s en utilisant la technique ~IUX dilftrenccs finies du type AD1 pour des angles allant de 60 

d 300 et pour des nombrcs de Prandtl de 0.72 ct 7.0. 

NATiiRLICHE KONVEKTION IN DER N.&HE EINER VERTIKALEK E;CKE BELIEBIGEN 
WINKELS 

Zusammentassung--- Es wird der Wirmetibergang bei laminarer natiirlicher Konvektion in d-r NShc einer 
vertikalen Ecke brliebigen Winkels untersucht. Die Grenzschichtgleichungen in der Ecke und die gecignetcn 
Randbedingungen werden fiir grolle Grashof-Zahien in eincm schicfwinkhgen Koordinatcnsystem bc- 
schrieben, das auf der Methode angepaljter asymptotischer Entwicklungen beruht. Die Untcrsuchung isr 
fiir jeden beliebigen Winkcl giiltig, mit Ausnahme der Grenzwinkel 0’ und 360”. Die Geschwindigkeits- 
und Tcmperdturverteiiungen werden numerisch mit Hilfe der Methode der finiten Differenzen (mit ADI) 

ermittclt. und zwar fiir Eckwinkel van 60’ bis 300 _ bei Prandtl-Zahlen von 0.72 und 7.0. 

ECTECTBEHHAX KOHBEKqWR B6JlM3M BEPTMKknbHOl-0 YI-JIA WWi3BOJIbHO~ 
BEJIHWiHbI 

.b”OTaI,M~kkCXn,“XCX JIaMHHapHblii eL?eCTBeHHOKOHBeKTABHbla TeWIOne~HOC B6nH3H BepIWiHbI 

BepTHKanbHOrO yrna npOrisBOnbHOii BenH'ltSIbl. HpH H&OnbmHX YHCjlaX rpaCrO@a ypaBHeHWI D.JUl 

3TO% 3G,aW )I COOTBeTCTByIoIUHt! I-pa"WmbIe yCnOBHK @OpMynHpyIoTCR B CHCTeMe KOCOyrOnbHbIX 

KOOpLWHdT HZ3 OCHOBaHWB M‘?TO&I Cpa”,‘,BaeMbIX aCAM”TOTWECKHX ~CJ,O~eHHii. AHanws IIBJII(&TCII 

CnpaBeDJIHBbIM npe n106oii Bena~wHe yrna 38 ACKnKNeHHeM npeJlenbeb~x,cocTaBnatolIJHx 0” u 3m.c 
wnonb30BaHkieM Hesumoro MeTona nepehsemfblx HanpaBnemiL gllcneHH0 0npenenaroTcr pacnpenene- 

mm CKOpoCTeir u TeMnepaTyp nnli ymoe,u3MeHnlomaxcn 0-r 60” n0 300” npu sicnax IIpaHnTnK 0,72 II 
7.0. 


